宇历三🜢年的时候,离宗和连宗很罕见的达成了全新的共识。
一个公式,在离宗算理和连宗算🞣理之中,具备完全一致的内蕴的话,那么,就可以说,这个公式,具备“绝对⛰性”。
这种“绝对性”,🏖🚈👞毫无疑问,给予了离宗某种“希望”🔘🀺🁹。🅯
对于他们来说,这简直就是不周之算的灭世一击下,所能找🈵🂭到的最后救赎与唯一福音。
“绝对性”的存在,或许就是在表明🆠🐹,数学实体是在🅶🖗不同的数学公理系统里面普遍存在的。
而🂻📾如果是这样的话,这个数学实体本身,或许就具有“实际完备”的性质。
这是他们最后的希望了。
或许🍯他们需要寻找到一条新的道路⛰,来探索出这个数学实体的性质。
在这🍯一点上,冯落衣与歌庭派的目的是出奇的一🗶☢致。
他们甚至暂且放下了些许分🚆👇🆫歧,🞣共同探索这一领域。
而在这一过程之中,海🟕🜼霆真人也终于崭露头角。
自从连宗证明直觉主义逻辑不比歌庭派的经典逻辑安全之🅯后,他就好像变了个⚮🔲人一样,沉默而寡言。
而在🍯黎京🕷首创之中,他自闭的倾向就更严重了。🗶☢
但是,这并不妨碍他作为一个算学家,继续发光发🙺🏘热。
他🂻📾从苏君宇的连续统研究之中👦🖲受到启发,引入了冯落衣在无限公理中研究良基集合的成果,创立了全新的流派构造主义。
在某🍯个🜢理论内,以🏖🚈👞有穷个符号,所定义之一切实体,直到反射序列的高度遍历“所有序数的序数”,便是一个可构造类。
而可构造公理⚣📌,便是宣告,良👦🖲基序列下合法集合所构成的总体,与“可构造性集合”,是相等的。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌恶的集合论,并且在冯落衣良基集合的基础上完成了初步的安全性♝证明👓🈚。📽☱
定义即构造,构造即证明,证明即路秩。
也正是因为如此,他在🟕🜼算器🚆👇🆫理论也小有突破,进入千🅶🖗机阁的视野之中。
歌庭派对此有些惊恐。
冯🂻📾落衣与图灵的存在【或许还可以算上王崎】,使得千机阁这个万法门分支门派,一直都是离宗的后花园。
也曾有🜢连宗修士走入过那里,甚至有算☖君这种连宗总头目开发出🖋👈了平行的算器理论。
但是,海霆真人是正式走入其中了。
他甚至有向离宗示好的倾向。海霆真人甚至证明,直觉主义和其他逻辑流派的关🝧🍥键差异,就在于“使用有穷个符号,是否就能操纵无穷乃至超穷的实体”。